Сорт может использоваться как для получения конкрета, так и благодаря яркой окраске лепестков, для приготовления сиропов, варенья, кондитерских изделий и чайных сборов.

Литература

- 1. Паштецкий В. С., Невкрытая Н. В., Мишнев А. В., Назаренко Л. Г. Эфиромасличная отрасль Крыма. Вчера, сегодня, завтра. Симферополь: «Ариал», 2018. 317 с.
- 2. Новиков И.А., Золотилов В.А., Аметова Э.Д. Содержание конкрета в перспективных сортообразцах розы эфиромасличной и оптимизация методики его определения // Сборник научных трудов Четвертой научно-практической конференции с международным участием «Молодые ученые и фармация XXI века». М.: ВИЛАР, 2016. С. 100–103.
- 3. Войткевич С. А. Эфирные масла для парфюмерии и ароматерапии. М.: Пищевая промышленность, 1999. 329 с.
- 4. Селекция эфиромасличных культур: методические указания // Под ред. А.И. Аринштейн. Симферополь, 1977. 151 с.
- 5. Биохимические методы анализа эфиромасличных растений и эфирных масел. Сборник научных трудов. Симферополь, 1972. 108 с.
 - 6. Методика полевых опытов по агротехнике эфиромасличных культур. Симферополь, 1972. 150 с.
- 7. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований): учебник для вузов. Издание 6-е. М.: Альянс, 2011. 350 с.
- 8. Государственный реестр селекционных достижений, допущенных к использованию. Том 1. «Сорта растений» (официальное издание). М.: ФГБНУ «Росинформагротех», 2019. 516 с.

UDC 633.811.615

Zolotilov V. A., Zolotilova O. M., Skipor O. B.

'Zolushka' - a new variety of essential oil Rose L.

Summary. Our aim was to create a competitive variety of essential oil *Rose* L. with a high yield of concrete. Studies were carried out at the experimental plots of FSBSI "Research Institute of Agriculture of Crimea" in 2011-2015. As a result of long-term breeding work, a new variety 'Zolushka' was created. Rose blooms yield reached 39.2±5.8 cwt/ha; the amount of concrete – 8.68±1.96 kg/ha. According to competitive variety trials, 'Zolushka' exceeded varieties 'Lany' and 'Lada' in flower (petals) yield by 17.2 and 14.3 cwt/ha; in yield – by 3.74 and 2.92 kg, respectively.

Keywords: Rose L., concrete, variety, sample, competitive variety trials.

DOI 10.33952/2542-0720-2020-5-9-10-63

УДК 575.162

Зубанова Юлия Сергеевна, Филобок Вера Алексеевна, Гуенкова Елена Анатольевна, Давоян Эдвард Румикович, Болдаков Дмитрий Максимович, Миков Дмитрий Сергеевич

Идентификация аллельных комбинаций генов *Ppd-D1*, *Vrn-A1*, *Vrn-B1* и *Vrn-D1* в линиях мягкой пшеницы, полученных в НЦЗ имени П. П. Лукьяненко

ФГБНУ «Национальный центр зерна имени П. П. Лукьяненко» e-mail: iula-86_86@mail.ru

Комбинация аллелей генов, определяющих фотопериодическую чувствительность *PPD* и потребность в яровизации *VRN*, влияет на скорость развития растений, структуру урожая, морозо- и зимостойкость, потребность в яровизации, засухоустойчивость, уход от высоких летних температур, устойчивость к болезням [2]. У мягкой пшеницы чувствительность к изменению продолжительности светового дня обусловлена влиянием трех генов ортологичной серии: *PPD1*: *Ppd-A1*, *Ppd-B1* и *Ppd-D1*, локализованных в хромосомах второй гомеологичной группы [7]. Ген *Ppd-D1* рассматривается в качестве ключевого локуса, определяющего фотопериодическую чувствительность гексаплоидных пшениц [3]. Однако сроки колошения на коротком и длинном дне зависят и от аллелей генов системы *VRN*, определяющих потребность в яровизации: *VRN1*; *VRN2*; *VRN3*; *VRN4* [6, 8]. По литературным данным, наиболее перспективно изучение генов

VRN1 (Vrn-A1, Vrn-B1 и Vrn-D1), которые ассоциированы с регуляцией перехода от вегетативной к репродуктивной стадии развития [4].

Цель исследования — молекулярная идентификация генотипов линий мягкой пшеницы по аллельным вариантам генов PPD1 и VRN1. Объект исследования — 286 линий мягкой пшеницы $Triticum\ aestivum\ L.,\$ полученные в отделе селекции и семеноводства пшеницы и тритикале НЦЗ имени П. П. Лукьяненко.

Идентификацию генов Ppd-D1, Vrn-A1, Vrn-B1 и Vrn-D1 проводили с использованием ПЦР с аллель-специфичными праймерами, которые отбирали на основании литературных данных [3, 5, 8, 9]. Продукты амплификации разделяли в 1,8-2,2% агарозном геле.

Согласно идентифицированным аллелям генов *Ppd-D1* и *VRN1* проанализированные образцы распределили по 21 гаплотипу, при этом в исследуемом материале преобладал доминантный аллель гена *Ppd-D1a* (гаплотипы 1-9), обеспечивающий нейтральную реакцию на фотопериод (таблица).

Таблица — Аллельнь	ій состав генов .	Ppd-D1 и VRN1	у линий мя	ігкой пшеницы

Комбинация аллелей (гаплотип)		Число образцов	Комбинация аллелей (гаплотип)		Число образцов	Комбинация аллелей (гаплотип)		Число образцов
1	D-DRR	2	8	D-RRD/R	15	15	R-DRR	5
2	D-DD/RD	1	9	D-RRR	44	16	R-DDR	1
3	D-RDR	11	10	D/R-D/RRR	1	17	R-RDR	1
4	D-RDD/R	1	11	D/R-RDR	3	18	R-RD/RD/R	1
5	D-RD/RR	1	12	D/R-RRD	13	19	R-RRD	23
6	D-RD/RD/R	1	13	D/R-RRD/R	1	20	R-RRD/R	3
7	D-RRD	123	14	D/R-RRR	5	21	R-RRR	30

Примечание. D-доминантный аллель; R-рецессивный аллель.

Наибольшее число линии мягкой пшеницы несут комбинацию аллелей D-RRD (гаплотип 7). Выявлены линии, которые можно отнести к группе пшениц-двуручек (гаплотипы 17 и 19). Так как доминантные аллели генов Vrn-B1 и Vrn-D1 частично снижают потребность в яровизации, такое сочетание аллелей генов Ppd-D1 и VRN1 определяет некоторую чувствительность к яровизации и достаточно сильно реакцию на короткий день, что важно в условиях Краснодарского края [1]. Гомозиготное рецессивное состояние локусов VrnA1, VrnB1, VrnD1 (D-RRR и R-RRR), определяющее озимый тип развития, выявлено в 74 образцах (гаплотипы 9 и 21). Все изученные образцы несут рецессивный аллель хотя бы одного гена VRN1, поэтому почти у всех генотипов в отсутствие яровизации сроки начала колошения увеличиваются.

В дальнейшем планируется провести сравнительный анализ полученных молекулярных данных с результатами оценки продолжительности вегетационного периода (всходы – колошение) у изучаемых линий.

Литература

- 1. Беспалова Л.А., Кошкин В.А., Потокина Е.К. Фотопериодическая чувствительность и молекулярное маркирование генов Ppd и Vrn в связи с селекцией сортов пшеницы альтернативного образа жизни // Доклады РАСХН. 2010. № 6. С. 3–6.
- 2. Стельмах А.Ф. Роль генетических систем в онтогенетической адаптации мягкой пшеницы // Экологическая генетика и эволюция. 1987. С. 146–161.
- 3. Beales J., Turner A., Griffiths S., Snape J., Laurie D. A pseudo-response regulator is misexpressed in the photoperiod insensitive *Ppd-D1a* mutant of wheat (*Triticum aestivum* L.) // Theoretical and Applied Genetics. Vol. 115. 2007. P. 721–733.
- 4. Danyluk J., Kane N.A., Breton G., Limin A.E., Fowler D.B., Sarhan F. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. // Plant Physiol. 2003. No. 132(4). P. 1849–1860.

- 5. Fu D., Szucs P., Yan L., Helguera M., Skinner J.S., von Zitzewitz J., Hayes P.M., Dubcovsky J. Large deletions within the first intron in *VRN-1* are associated with spring growth habit in barley and wheat // Mol. Genet. Genomics. 2005. Vol. 273. P. 54–65.
- 6. Kippes N., Debernardi J.M., Vasquez-Gross H.A., Akpinar B.A., Bu-dak H., Kato K., Chao S., Akhunov E., Dubcovsky J. Identification of the vernalization 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. // Proc. Natl. Acad. Sci. USA. 2015. No. 112(39). P. 5401–5410.
- 7. Scarth R., Law C.N. The control of day length response in wheat by the group 2 chromosomes // Z. Pflanzenzücht. 1984. Vol. 92. P. 140–150.
- 8. Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. Allelic variation at the *VRN-1* promoter region in polyploid wheat // Theoretical and Applied Genetics. 2004. Vol. 109. P. 1677–1686.
- 9. Zhang X.K., Xiao Y.G., Zhang Y., Xia X.C., Dubcovsky J., He Z.H. Allelic variation at the vernalization genes *Vrn-A1*, *Vrn-B1*, *Vrn-D1*, and *Vrn-B3* in Chinese wheat cultivars and their association with growth habit // Crop Sci. 2008. Vol. 48. P. 458–470.

UDC 575.162

Zubanova Yu. S., Filobok V. A., Guenkova E. A., Davoyan E. R., Boldakov D. M., Mikov D. S. Identification of allelic combinations of the *Ppd-D1*, *Vrn-A1*, *Vrn-B1* and *Vrn-D1* genes in common wheat lines obtained in the National Center of Grain named after P. P. Lukyanenko

Summary. An analysis of the allelic composition of the genes determining photoperiodic sensitivity (*Ppd-D1*) and the need for vernalization (*Vrn-A1*, *Vrn-B1*, *Vrn-D1*) was carried out in 286 common wheat lines obtained in the National Center of Grain named after P. P. Lukyanenko with the use of allele-specific primers. The analyzed samples were distributed over 21 haplotypes; the dominant allele of the *Ppd-D1a* gene prevailed in the studied material. 123 lines of common wheat carry a combination of D-RRD alleles. The lines that can be attributed to the group of alternate wheat (R-RDR, R-RRD) were identified. All studied samples carry the recessive allele of at least one *VRN1* gene.

Keywords: alleles of *Vrn* and *Ppd* genes, molecular markers, lines of common wheat.

DOI 10.33952/2542-0720-2020-5-9-10-65

УДК 633.18.03: 633.181: 575: 631.527

Коротенко Татьяна Леонидовна, Мухина Жанна Михайловна

Сравнительная характеристика интродуцированной китайской генплазмы риса и адаптированных местных сортов кубанской селекции в условиях юга России

ФГБНУ «Федеральный научный центр риса» e-mail: korotenko.tatyan@mail.ru

Для Краснодарского края рис (*Oryza sativa* L.) — это стратегическая культура, а для Китая — главная национальная продовольственная. Родиной риса считают Южноазиатский центр, обладающий большим генотипическим разнообразием. Азия — самый большой материк по площади, который дал миру более 70 % всей культурной флоры [1]. Для сохранения биоразнообразия, получения полезных признаков для селекции и снижения генетического родства современных сортов в российских научных организациях созданы и поддерживаются рабочие коллекции зерновых, масличных и крупяных культур. В коллекциях значимых сельскохозяйственных культур важное место занимают новые формы растений, интродуцированные из различных почвенно-климатических зон земного шара, так как обмен генплазмой в последнее десятилетие ученые рассматривают как необходимый компонент в повышении урожайности и устойчивости новых сортов.

Основной генофонд риса в России сосредоточен в ФИЦ ВИР им. Н. И. Вавилова (г. Санкт-Петербург) — более 10 тыс., и головном научном учреждении по вопросам рисоводства ФГБНУ «ФНЦ риса» (г. Краснодар) — более 7,1 тыс., а национальный Генный банк Китая насчитывает более 80 тыс. образцов культуры. Эти коллекции являются хранителями уникального генетического материала риса с широким диапазоном признаков