площадках Казахского научно-исследовательского института земледелия и растениеводства. С помощью статистической программы R установлено, что урожай зерна от твердой головни снижался на 0,4—32,3%, а на урожайность растений оказывали влияние факторы сорта и степени их пораженности болезнью. Эти показатели коррелировали с высотой растений, нижнего колена, длиной и шириной колоса, количеством колосков, весом зерна с колоса и с растения. У четырех сортов потери урожая зерна (Жетысу, Фараби, Ажарлы и Стекловидная 24) составили от 0,2 до 3,6 %, а у сорта Наз эти показатели были в пределах 32,3 %. У сорта Наз 43,0 % растений были поражены твердой головней на 100 %, у Жетысу, Фараби, Ажарлы и Стекловидная 24 поражено до 15, 77, 85, 44 % растений соответственно, с уровнем пораженности от 10 до 20–30 %.

Ключевые слова: сорт, твердая головня, озимая пшеница, потери зерна, степень пораженности, значимость.

DOI 10.33952/2542-0720-2020-5-9-10-59

УДК 643.7:631.527

Евтушенко Надежда Степановна

Перспективные сеянцы крыжовника для Среднего Урала

ФГБНУ «Уральский федеральный аграрный научно-исследовательский центр УрО РАН» e-mail: Evtush60@yandex.ru

Крыжовник является традиционной русской культурой, которую использовали в нашей стране для промышленного возделывания с достаточно высокой доходностью [1, 2]. Для возобновления товарного ягодоводства в настоящее время, прежде всего, необходим надежный сортимент.

На Свердловской селекционной станции садоводства с начала ее образования (1935 г.) проводили сбор местных образцов крыжовника, которые после сортоизучения приобретали статус сортов (Агалакова вишневый, Андреева № 1, Свердловский, Челябинский зеленый), а затем их включали в стандартный сортимент по Уральскому региону, либо использовали в селекции. В 60-х гг. прошлого века получена целая серия местных сортов крыжовника — Уктусский белый, Октябренок, Совхозный, Северянин, Уральский виноград и другие, часть из которых в разные годы была районирована, а последние два и на сегодня не потеряли актуальности [3]. С того времени районированный сортимент крыжовника Свердловской области местными сортами не пополнялся.

Цель нашей работы — получение сортов крыжовника, сочетающих в себе высокий уровень хозяйственно полезных признаков с хорошей адаптацией к агроклиматическим условиям Среднего Урала, стрессовый фактор которых в последние десятилетия усилился. В скрещивания включали интродуцированные сорта российской и зарубежной селекции — сложные межвидовые гибриды, а также местные сорта и сеянцы. Лучшие гибридные сеянцы были высажены на участок сортоизучения с почвами естественного плодородия, без полива.

Исследования проводили на уникальной научной установке коллекции живых растений открытого грунта «Генофонд плодовых, ягодных и декоративных культур на Среднем Урале», г. Екатеринбург, в рамках выполнения Государственного задания Министерства образования и науки России по теме «Разработка и совершенствование методов селекционной работы, создание исходного материала и адаптивных сортов зерновых, зернобобовых, кормовых, плодово-ягодных, декоративных культур и картофеля» (№ 0773-2019-0022). Учеты и наблюдения выполнены в 2016–2019 гг. по Программе и методике сортоизучения плодовых, ягодных и орехоплодных культур [4]. У – индекс устойчивости продуктивности.

В таблице приведены результаты изучения сеянцев крыжовника за четыре года, характеризовавшиеся контрастными погодными условиями: жарким и засушливым летом в 2016 г., прохладным и переувлажненным вегетационным периодом 2017 г., ранней зимой, вызвавшей нарушение процессов закалки растений (осень 2017 г.), низкими зимними температурами (–35 °C, декабрь 2016 г.), ранними осенними (–32,5°C, ноябрь 2016 г.) или поздними зимними морозами (–33,0 °C, февраль 2019 г.), а также заморозками в период цветения (–4,5°C, 2017 г.).

В сложных агроклиматических условиях все сеянцы, кроме II-12-4, показали хорошую зимостойкость. Продуктивность в первые годы плодоношения зависела не только от устойчивости к климатическим условиям, но и от интенсивности роста кустов, срока вступления в фазу плодоношения и плодородия почвы. У большинства сеянцев она была существенно выше контрольного сорта. У сеянцев I-10-3-13-05, I-4-2-2-05, II-7-7,8 и II-10-4 средняя продуктивность составила от 1,0 кг с куста, у остальных, кроме сеянца II-12-4, достигла промышленно значимого уровня. Высокой устойчивостью продуктивности по годам характеризовались сеянцы I-4-2-2-05 и II-10-4. У большинства сеянцев в 2017 г. проявилась генетически заложенная крупноплодность. К стабильно крупноплодным можно отнести сеянец II-10-4. Все сеянцы показали хороший вкус, варьировавший в зависимости от погодных условий. Большинство сеянцев устойчиво к патогенам рода *Sphaerotheca*. По результатам изучения сеянец II-7-7,8 в 2019 г. передан на Госсортиспытание.

Таблица – Результаты изучения перспективных сеянцев крыжовника, 2016-2019 гг.

Сеянец	Степень подмерзания, балл		Продук- тивность, кг/куст	Y	Масса плода,		Вариации вкуса, балл	Максимальный балл поражения сферотекой	Шипова- тость
	средняя	max.		Пос	средняя адка 2012			сферотекои	
Уральский виноград (контроль)	0,8	1,0	0,7	0,61	3,4	7,8	4,2-4,6	1,0	сильная
I-10-3-13-05	1,2	2,2	1,2	0,40	3,2	3,8	4,1-4,2	1,0	сильная
II-7-7,8	0,7	1,1	1,0	0,57	3,6	7,9	4,2-4,5	0	сильная
I-9-3-51-05	1,0	1,6	0,9	0,50	3,5	6,8	4,3-4,6	0	средняя
HCP ₀₅			0,19						
Посадка 2013 г.									
I-4-2-2-05	1,4	1,7	1,1	0,85	3,2	4,8	4,3-4,5	0	сильная
II-10-4	0,8	1,5	1,0	0,80	5,0	9,0	4,2-4,6	2,0	сильная
I-2-41	0,8	1,0	0,7	0,41	3,1	5,4	4,2-4,5	1,0	средняя
I-7-21	0,6	1,5	0,6	0,42	3,7	7,2	4,2-4,4	0	средняя
II-12-4	1,6	4,0	0,2	0,14	4,0	6,8	4,2-4,6	0	сильная

Примечание. Схема посадки -3×1 м.

Демидовский (II-7-7,8) — Свердловский \times Розовый ранний. Сорт раннего срока созревания. Зимостойкий, урожайный. Куст среднерослый, средне- или слабораскидистый, средней густоты, побеги шиповатые. Шипы одиночные, редко двойные, к верхушке могут пропадать. Ягоды среднего размера (3,6 г), с редкими волосками, красные, очень хорошего богатого вкуса, созревают одновременно, не осыпаются. Кожица плотная. Пятнистостями поражается в средней степени. Сферотеки не отмечалось. Химический состав плодов: аскорбиновая кислота — 54,5 мг %, СРВ — 16,2 %, сумма сахаров — 8,0 %, общая кислотность — 1,3 %, катехины — 338 мг %, антоцианы — 8,13 мг %. Сорт очень отзывчив на плодородие почвы и увлажнение.

Литература

1. Сальников В. В. 25 лет работы станции по садоводству // Сборник статей по садоводству. 1960. С. 3–11.

- 2. Левитин X. 3. Улучшение сортимента смородины и крыжовника для Среднего и Северного Урала // Информационный бюллетень. 1958. С. 42–54.
- 3. Государственный реестр селекционных достижений, допущенных к использованию. Т. 1. «Сорта растений» (официальное издание). М.: ФГБНУ «Росинформагротех», 2020. С.415.
- 4. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур // Под ред. Седова Е. Н. и Огольцовой Т. П. Орел: ВНИИСПК, 1999. С. 351–372.

UDC 634.7:631.527

Evtushenko N. S.

The best gooseberry varieties for the Middle Urals

Summary. The results of the study of eight selected and elite gooseberry seedlings in the Middle Urals are represented in this article. All seedlings, with the exception of II-12-4, are winter-hardy. The hybrids II-7-7,8 and II-10-4 have the maximum berry weight (7.9–9.0 g). In 2019, variety 'Demidovsky' (II-7-7,8) was accepted to State Variety Testing program.

Keywords: gooseberry, varieties, winter hardiness, productivity, berry size, disease resistance.

DOI 10.33952/2542-0720-2020-5-9-10-60

УДК 631.52:633.853.52

Зима Дмитрий Евгеньевич, Кочегура Александр Васильевич

Перспективы селекции сои на повышенный процент белка в семенах

OOO Компания «СОКО» e-mail: zde@co-ko.ru

В последние годы перерабатывающие предприятия Российской Федерации повысили требования к содержанию белка в семенах сои, что в свою очередь стимулировало корректировку селекционных программ в плане улучшения биохимических показателей семян сои. Многочисленные данные показывают наличие отрицательной взаимосвязи между содержанием белка в семенах и урожайностью. Однако практические результаты селекции сои свидетельствуют о возможности сочетания урожайности семян с повышенным процентом в них белка [2–4]. Подтверждением вышесказанному является то, что в настоящее время в производстве появляются отечественные и иностранные сорта сои с повышенным содержанием белка в семенах.

Цель исследований заключалась в выявлении перспектив селекции сои на повышение процента белка в семенах.

Исследования проведены в 2017–2019 гг. на селекционном материале ООО Компании «СОКО» в Динском районе Краснодарского края. Для анализа были использованы сорта предварительного испытания, линии селекционного питомника и коллекционные сортообразцы. Проведение полевых исследований осуществляли в соответствии с методическими указаниями [1]. Полученные семена очищали, взвешивали и определяли их влажность. Биохимический состав семян определяли на спектрометре БлИК-области FT-NIR «ТАNGО». Процент белка представлен в пересчете на абсолютно сухое вещество.

Анализ широко используемых в производстве сортов сои селекции Компании «СОКО» показывает небольшое их разнообразие по проценту белка в семенах (таблица). В среднем за три года признак варьировал в диапазоне от 38,6 до 41,4 %, при этом разница между крайними значениями составила всего 2,8 %. Максимальное количество белка в семенах (41,4 %) накопили скороспелые сорта Бара и Арлета. Среднее содержание протеина сформировали раннеспелые сорта Селекта 201 и СК Оптима (39,5 и 40,1% соответственно), а наименьшим количеством белка в семенах отличились скороспелый сорт Спарта и среднеспелый сорт Селекта 302 (по 38,6 %). В целом по всем возделываемым в производстве сортам содержание белка составило 39,9 %.